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Abstract CIvv fan inlet guide vane angle, deg
To develop advanced control systems for optimiz- DEEC digital electronic engine control

ing aircraft engine performance, unmeasurable output Dyoz nozzle drag, Ib

variables must be estimated. The estimation has to be Dran ram drag, 1b

done in an uncertain environment and be adaptable to .

. - . d difference

varying degrees of modeling errors and other varia- i

tions in engine behavior over its operational life cycle. E expectation operator

This paper presents an approach to estimate unmea- EMD engine model derivative

sured output var}ables by exphc1t%y mode:lmg the ef- ¢ state error vector

fects of off-nominal engine behavior as biases on the

measurable output variables. A state variable model  fG gross thrust, 1b

accommodating off-nominal behavior is developed for Fnp net propulsive thrust, 1b

the engine, and Kalman filter concepts are used to es- I identity matrix

timate the required variables. Results are presented K Kalman filter gain

from nonlinear engine simulation studies as well as the f

application of the estimation algorithm on actual flight V! an rotor speed, rpm

data. The formulation presented has a wide range of N2 core rotor speed, rpm

application since it is not restricted or tailored to the P Riccati matrix

particular application described in the paper. PB bumer static pressure, Ib/in?

Nomenclature PLA power lever angle, deg
A,B,C,D, system matrices in state PSC performance seeking control
F,.G,.H variable representation PSM propulsion system model

Aj nozzle area, in. Pr, compressor inlet total pressure, 1b/in?
b bias vector Pr, low turbine inlet pressure, 1b/in?
CDF component deviation factors Pr, afterburner inlet total pressure, 1b/in?

Pp, nozzle throat total pressure, Ib/in®
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SMyc high compressor stall margin
SOAPP state-of-the-art propulsion program
SSM steady state model
SVM state variable model
TMT turbine metal temperature, °R
Tr, compressor inlet total temperature, °R
Tr, burner inlet total temperature, °R
Tr, burmner exit total temperature, °R
Trys low turbine inlet total temperature, °R
Tr afterbumer inlet total temperature, °R
Tp, nozzle throat total temperature, °R
u control input vector
WCran corrected fan air flow, 1b/sec
WCypc corrected compressor air flow, Ib/sec
Wg main burner fuel flow, 1b/hr
wy state excitation noise
wy measurement noise
T state vector
y output vector
Yauz vector of auxiliary, (unmeasured)
output variables
augmented state vector
variation from trim values
Superscripts
T, transpose of a matrix
" estimated value of variable
derivative
Subscript
b output bias term
m flight or simulated data
N.L. nonlinear
t trim, initial, or steady state
1 augmented system matrices
Introduction

Efforts to improve aircraft turbine engine efficiency
have led to an increase in the number of engine control

variables and a corresponding increase in the complex-
ity of control laws. Control laws for current engines
are based on classical control theory and empirical
schedules for a nominal engine. Classical control the-
ory has served well for the current and older engines.
The design of future fighters as multifunction aircraft
and development of integrated flight/propulsion con-
trol systems, however, require sophisticated control
systems capable of obtaining the maximum perform-
ance from the engine. Optimal control techniques us-
ing modem control theory are required to obtain ad-
ditional gains in engine performance. For modem air-
craft, accounting for engine variations through designs
based on predetermined control schedules is increas-
ingly difficult because of the increased complexity and
increased number of control effectors on the engines.
Engine-to-engine component variations, engine dete-
rioration, and off-nominal behavior are difficult to ac-
count for in the design of control system schedules.

An adaptive control algorithm, which computes op-
timal control trim settings for the engine while maxi-
mizing the vehicle performance for a given flight con-
dition, accounts for these variations better than gain
scheduling. Specifically, an adaptive trim control sys-
tem computes and applies an incremental steady state
trim to enhance the engine performance. !

For over a decade, the National Aeronautics and
Space Administration (NASA) Ames Research Cen-
ter, Dryden Flight Research Facility (Ames-Dryden)
has conducted a multidisciplinary flight research pro-
gram on an F-15 airplane. Significant portions of this
research involved the flight evaluation of advanced
propulsion control concepts in programs such as digi-
tal electronic engine control (DEEC), the F100 engine
model derivative (EMD), and highly integrated digi-
tal electronic control (HIDEC).? The increased perfor-
mance and improved fuel economy demonstrated on
the F-15 HIDEC research vehicle is the basis of the
performance seeking control (PSC) program, which
will provide additional improvements in these areas.

Ames-Dryden, McDonnell Aircraft Company, and
Pratt & Whitney are currently developing and demon-
strating an adaptive PSC system in flight on a NASA
F-15 airplane powered by F100 EMD engines. The
PSC system optimizes aircraft performance by apply-
ing adaptive trim control to the propulsion system op-
erating in a pseudo-steady-state cruise mode. The
trim schedules are determined for a highly nonlin-



ear propulsion system which has system and measure-
ment noise, unmeasurable parameters, and sensitivity
to normal deterioration over its life cycle.

Figure 1 shows the adaptive trim control structure
used for the PSC. The state variable model (SVM)
and the steady-state model (SSM) which model the dy-
namic and steady-state behavior of a nominal engine,
are key components of the system. These models are
stored onboard the aircraft in a table look-up form and
are discussed in more detail in the following section.

These models are used in formulating the propulsion
system model (PSM) which represents a small pertur-
bation model of the actual flight propulsion system.
The PSM contains relations which provide estimates
of performance measures (such as augmentor effects,
thrust, and stall margins) and constraint equations. A
linear programming algorithm is used to find the opti-
mal solution and these commands are then applied to
the engine through the DEEC.

The values of output variables, which are often not
directly measurable, are needed for the optimization
algorithm used in the PSC. These variables are esti-
mated under changing levels of engine health, man-
ufacturing differences between engines, and other off-
nominal behavior. Accommodating these performance
variations in engines has been investigated in two re-
cent studies.3#

Reference 3 presents an algorithm for estimating the
cause and level of off-nominal engine operation by us-
ing a Kalman filter algorithm to estimate five engine
factors. These five factors, referred to as component
deviation factors (CDF), compensate for off-nominal
performance. These factors were estimated by treat-
ing them as biases, and the original state vector was
augmented to give five additional states.’ These five
factors are not explicitly used in the optimization algo-
rithm and their physical significance is unclear because
the formulation does not account for biases, prediction
errors, and Reynolds number effects, Since the coeffi-
cients with respect to the CDF parameters are required
in the Kalman filter development, the CDF formulation
requires detailed modeling of the off-nominal process.
A flight data evaluation of this algorithm is described
in Ref. 6.

In Ref. 4, a component tracking filter is used to
achieve the model accuracy required to optimize en-
gine performance. The component tracking filter com-

bines the concept of state tracking and adaptive filter-
ing to minimize engine/model mismatch. It is based on
a frequency decomposition of the differences between
the sensed engine parameters and the model values.

This paper presents another method of accounting
for off-nominal operation and other modeling inaccu-
racies. Since any variation from the nominal model
would result in a change in the sensed values of the
measured outputs, the off-nominal behavior of an en-
gine is characterized in terms of these changes. Uncer-
tainties associated with any given engine will be repre-
sented as systematic errors in the sensed output param-
eters. These systematic errors will be accounted for by
augmenting the original state equation with bias states.
A Kalman filter is used to estimate the original engine
states and the bias states. The Kalman filter inputs are
measurements from standard F100 engine control in-
strumentation. The auxiliary output equations for the
unmeasured output variables arc modified to include
the effect of the bias states.

The concept is validated by applying the developed
filter on both simulation and flight data. For the sim-
ulation data case, the output variables were estimated
by using the data from the available nonlinear engine
simulation. Both a nominal engine and an engine in
which intentional dcgradation was introduced to create
off-nominal behavior were considered. For the flight
data case, the estimation process was performed using
actual flight data from an F-15 aircraft. For this case,
comparative results are also presented for the proposed
algorithm and the CDF formulation. Both the sim-
ulation and flight evaluations were carried out for a
flight condition of Mach 0.90 and 30,000 ft, for a part
power setting.

Engine Description

The engine used in this study is the Prait & Whitney
F100 EMD low-bypass ratio, twin spool, afterbum-
ing turbofan engine’ (Fig. 2). The engine is controlled
by a DEEC, a full-authority digital electronic control
system which performs the functions of the standard
F100 engine hydromechanical, unified fuel control,
and supervisory digital electronic engine control.

Engine Models

Pratt & Whitney has developed a comprehensive
nonlinear dynamic engine model, the state-of-the-art
propulsion program (SOAPP) model. This model is



the best representation of the engine and predicts en-
gine performance with minimal error over the full
power range and flight envelope and for both steady-
state and transient operation. This nonlinear simula-
tion is a high-fidelity model that represents each com-
ponent in the engine and control but does not run in
real time.

For real-time use, a set of linearized SVMs were de-
veloped from the SOAPP model. To cover the entire
flight envelope, 49 models were developed. The model
is selected as a function of bumer static pressure (P B).
These models compare well with the large scale non-
linear acrothermal model and actual engine test data,
and they can be implemented efficiently in real time.
Figure 3 shows a simulation model for the F100 engine
based on the state variable formulation.

The SSM engine relationships and trim predictions
(basepoints) are also derived from the SOAPP model.
A two-dimensional table look-up scheduled on 7 val-
ues of PB and 40 values of afterburner total pressure
(Pry) is needed to represent the steady state informa-
tion. Each SSM consists of a basepoint control vector,
a basepoint output vector, and a sensitivity coefficient
matrix which relates the changes in control positions
to change in outputs.

The PSC algorithm requires the variables listed in
Table 1, which are functions of the engine states and
the input control variables. These variables include
engine outputs which cannot be measured but are re-
quired to calculate performance measures of the en-
gine. An additional set of variables, which are non-
linear functions of the unmeasured output variables,
are listed in Table 2. These variables are used to pre-
dict both the engine performance and the constraints
needed to develop optimal engine controllers.

Kalman Filter Concepts

The entire state vector of the system to be controlled
is often assumed to be measurable. Most of the so-
lutions to optimal control problems are obtained as a
feedback law implementable only if the entire state
vector is available. In most complex systems the en-
tire state vector cannot be measured, and a suitable ap-
proximation to the state vector must be determined and
substituted into the control law. The system that pro-
duces, in deterministic setting, an approximation to the
state vector is called an observer.?

Kalman and Bucy solved the optimal observer prob-
lem in a stochastic environment, and this solution has
had a tremendous impact on optimal filtering theory.’
The Kalman filter represents the most widely applied
and demonstrably useful result to emerge from the
state variable approach of “modem control theory.”!0

The system is

t=Ax+ Bu+w )]
y=Cz+ Du+ wy ¥))

Where A, B, C, and D are system matrices in state
variable representation, z is the state vector, u is the
control input vector, y is the output vector, w; is the
state excitation noise, and w, is the observation or
measurement noise. Both wy and w, are white, un-
correlated Gaussian processes, with intensity Q and
R respectively.

The observer is
4= A%+ Bu+ K[y — C% — Du]

where K is the Kalman filter gain.

The optimal observer problem is finding the matrix
K s0 as to minimize E{e” Re}, where

€E=T—T

and R is a positive-definite symmetric weighting ma-
trix. In this problem, E is the expectation operator and
e is the state error vector. If R is a positive-definite
matrix, the optimal observer is called nonsingular. The
Kalman filter is the solution to the nonsingular optimal
observer previously outlined. The optimal observer
problem is solved by choosing the gain matrix.!!

K=PCTR!

where P is the state error covariance matrix,
E[(z—%)(z—%)T], and is the solution to the matrix
Riccati equation

P=AP+PA" +Q-PC"R'CP

For a time invariant case, the steady state solution for
P is a conslant matrix and is a unique nonnegative def-
inite solution of the algebraic Riccati equation

0= AP+ PA" + Q- PCTR"!'CP



Figure 4 shows a typical Kalman filter structurc used
to estimate states and outputs.

Proposed Formulation

In Kalman filter derivation, linear models for the
system dynamics and measurement relation are as-
sumed to be adequate for developing optimal estima-
tors. No model is perfect, and a linear model, in
particular, is the result either of intentional approxi-
mation and simplification or of a lack of knowledge
about the system being modeled.!? To account for de-
graded engine operation and modeling inaccuracies,
the proposed formulation augments the output vec-
tor by adding a bias vector to represent the uncertain
parameters.” The dynamic equations can thus be ex-
pressed as

T=Az+ Bu+ w
y=Cz+ Du+ b+ wy

where b is the bias vector. The bias vector is estimated
by adjoining b to = and defining a new state vector, 2

with the condition
b=0
The state equation can be rewritten as

2= A1z+ Biu + Gu
y=Ciz+ Du+ w;

where
A0 [ B ]
Al= .. . B1= “eoe
0 : 0 L
[ 1 ]
Ci=[C I G=1| ---
-0 -

If the estimate of z is 2, where
T

Y

b
then the Kalman filter estimate is given by

2= A12+ Biju+ PCI R [y — C1% — Du)

where P is the steady state solution to the
Riccati equation

0= AP+ PA] + GQGT — PCIR™'C\ P

The auxiliary set of unmeasured output variables
(¥auz) are related to the engine states and control in-
puts through the algebraic equation

Vauz = Hz+ Fu

Details of the state variable formulation for the
F100 engine are presented in the appendix. The (§,uz)
outputs are listed in Table 1.

In spite of the mathematical formalism of the
Kalman filter, engineering insight and experience is
required to develop an effective operational filter al-
gorithm. A mathematical model of both the system
structure and uncertainty is inherently embodied in the
Kalman filter structure. The main design problem is at-
taining an adequate mathematical model upon which
to base the filter. Even after selecting an appropriate
model, the matrices Q and R can be difficult to de-
termine. This is done by a process called “tuning” the
Kalman filter. It is a trial and error procedure for deter-
mining which matrix values yield the best estimation
performance for that particular filter structure.

The matrix R was determined by analysis of flight
data available for the F100 engine. The elements of
matrix Q) were, however, selected by evaluating the
performance of the Kalman filter by trial and error.
Figure 5 shows the implementation process used to es-
timate the output variables for the F100 engine using
the Kalman filter.

This proposed formulation estimates unmeasured
output variables by explicitly modeling the effects of
off-nominal engine behavior as biases on the measur-
able output variables.

Results

The proposed estimation algorithm was developed
and evaluated for a Mach 0.90 and 30,000 ft flight con-
dition. The algorithm was evaluated by a comparison
with SOAPP simulation results and also by application

to flight data. The flight data results were compared
with the CDF formulation results for the same data.

Simulation Evaluation

The SOAPP simulation evaluations consisted of cs-
timating the desired variables using both a nominal and



adegraded engine. In each case, the power lever angle
(PLA) was held to 37° for 15 sec and then stepped up
to 43° and held constant for the remainder of the run.

Measured outputs were obtained from the SOAPP
simulation and were corrupted with noise, as shown
in Table 3. These are typical values obtained from
flight data. The measurements with noise and the
values of the control variables were entered into the
estimation algorithm and the desired estimates were
obtained. The Kalman filter state vector, a perturba-
tion of the steady state conditions, was initialized to
zero for all states.

The algorithm needed to generate consistent state
estimates which were robust with respect to the mea-
surement covariance matrix Q (the only variable se-
lected by trial and error). An important aspect of the
development is determining unmeasured output vec-
tor, J4uz. Inconsistent estimates of the states would
give different values of fj4y, for different values of Q
when applied to the same data.

The state vector estimates converged to the same
value for different values of Q. This was evaluated
for values of Q =1 and Q = 10I. The difference in the
estimated states for Q =1 and Q = 10I, for a nom-
inal engine, is shown in Fig. 6. This figure shows
that the state estimates converge to the same value and
the effect of change in Q on the steady-state response
is minimal.

The five measured output variables obtained from
the SOAPP for a nominal engine were compared with
the estimates of these variables obtained from the filter
(Fig. 7(a)). The prediction values subtracted from the
simulated measurements were held constant through-
out the run. These values were the same as the sim-
ulated measurements at the beginning of the run, ac-
counting for the excellent comparison over the initial
interval. The Kalman filter was not updated in this
evaluation, so the comparisons indicate that the model
is quite robust. The comparisons are very good in spite
of the large change in the operating conditions. The
CDF based formulation would have used five different
models for the PB change of this maneuver.

Figure 7(b) shows the measurement bias estimates.
As expected, they are nearly zero until the PLA is in-
creased. As the engine attains a new operating condi-
tion, the bias parameters increase to levels which ac-
count for the effects not modeled in the SVM.

To assess the condition when significant differences
exist between the measured data and the predicted
data, the following nominal biases were added to
the simulated flight data: A N; (fan rotor speed) =
50.0, ANz (core rotor speed) = 50.0, APB = 2.0,
ATr, ; (low turbine inlet total temperature) = 30.0, and
A Pr; =0.5. The results of this evaluation (Fig. 8(a))
show that the tracking of the five measurements is
again very good. The final values of the bias estimates
(Fig. 8(b)) are the sum of biases estimated in Fig. 7(b)
and the biases placed on the simulated measurements
as previously listed.

In Fig. 9, estimates of the unmeasured output vari-
ables (§,4z) are compared with the actual values ob-
tained from the SOAPP. The estimates show good
tracking of the simulation values.

Simulation evaluations were then carried out for
a degraded engine by simultaneously introducing the
following deteriorations: (a) high turbine efficiency is
2.5 percent below nominal, (b) low turbine efficiency
is 2.5 percent below nominal, (c) compressor airflow
deviation is 1 Ib/sec less than nominal, and (d) the fan
airflow deviation is 5 Ib/sec less than nominal.

The results for the simulated degraded engine are
presented in Fig. 10. These results are similar to the
results of Fig. 7 and demonstrate the adaptability and
robustness of the proposed estimator to degraded en-
gine performance. Again, the Kalman filter was not
updated during the evaluation and the predicted con-
stant values subtracted from the simulated data were
the same as those for an engine that was not degraded.

Flight Data Evaluation

The Kalman filter formulation was also evaluated on
flight data obtained on the NASA F-15 research air-
craft. The flight data was obtained at Mach 0.90, an
altitude of 30,000 ft, and a PLA of 43.5°. The time
history of the test data (Fig. 11) starts with no bleed air
being extracted from the test engine. Approximately
40 sec into the run, the pilot manually changed the
bleed switch to extract all the aircraft bleed air require-
ments from the test engine. This maneuver was de-
signed to simulate a change in engine operating effi-
ciency. The engine control system increased fucl flow
(W) to maintain the scheduled fan speed, resulting in
anincrease in T, ;. After holding this bleed condition
for approximately 70 sec, the bleed was again switched
back to the initial no bleed air condition.



The Kalman filter estimation results are shown in
Fig. 12. Figure 12(a) shows that the filter tracks the
flight measurements accurately. Initial discrepancies
occur because the bias estimates start at zero; how-
ever, this startup transient is brief, with good track-
ing occurring in approximately 20 sec. Although
the tracking quality is slightly worse at the time the
bleed switching occurs, the filter rapidly adapts to
the simulated change in engine efficiency. The bias
estimates, shown in Fig. 12(b), converge rapidly to
steady-state values as the engine state is changed from
one condition to another. The initial startup tran-
sient could be minimized by initializing the bias esti-
mates with the actual values of the biases for the given
flight condition.

Figure 13 shows the results from the proposed
formulation compared with the corresponding results
from the CDF formulation. The results were obtained
using the flight data shown inFig. 11. The results show
that the performance obtained by the proposed method
compares favorably with the CDF procedure. A signif-
icantly improved startup transient performance is evi-
dent. Figure 14 presents similar comparisons for the
estimates of normally unmeasured output variables.
Figure 14(a) shows the estimate of compressor inlet to-
tal temperature (T, ;) and the measured values. The
superiority of the proposed formulation is clearly ev-
ident, if the measurement of T, , is considered reli-
able. Figure 14(b) shows the comparative estimates of
corrected fan airflow (WCr4n). The values are com-
parable, with better transient performance for the pro-
posed formulation.

Concluding Remarks

An approach has been proposed to estimate the un-
measured or auxiliary output variables of a turbofan
F100 engine by using Kalman filter concepts. The
approach is based on explicitly modeling the effects
of off-nominal engine behavior as biases on the mea-
sured output variables. Results are presented for esti-
mates of the output variables and are compared with
values obtained from detailed nonlinear simulation of
the engine. The evaluation was carried out for both
a nominal engine and an engine in which intentional
deterioration was introduced. The proposed filter was
also evaluated for output estimation using actual F-15
flight data.

The formulation is robust with respect to the value
of state covariance matrix Q. A critical component
of the performance secking control (PSC) problem for
the F100 engine is determining consistent values for
auxiliary output variables. Consistent estimates for the
states were obtained for different values of Q and thus
consistent estimates of the auxiliary output variables
are ensured.

The proposed estimation algorithm was able to ac-
curately predict the values of the output variables for
the simulation studies for both nominal and degraded
engine conditions. The proposed algorithm has been
validated by comparing its estimates with the values
from the detailed nonlinear simulation, and it has per-
formed well on flight data. A comparative study of
the proposed algorithm results with component devia-
tion factors (CDF) results gave additional proof of the
validity of the concept. Unlike the CDF method, the
proposed algorithm does not require detailed model-
ing of the engine degradation process. This formula-
tion has a wide range of application because it is not
restricted or tailored to the particular application de-
scribed in this paper.
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Appendix—State Variable Auxiliary Output Estimation Formulation for an F100 Engine

For the system being considered, the complete state
variable model is

6z = A18z+ B16u + Guy
8y =Ci16z+ Déu+ wy

where 1 indicates augmented system matrices, and

SN
6N,
STMT W gx;
- Nl; - 6AJ _
2=| N, [8%=| scrvy %Y gﬁg
Pr, SROVV X
PB T4 s
TT‘.S‘

where TMT is the turbine metal temperature, b de-
notes the output bias term, CIV'V is the fan inlet guide
vane angle, RCV'V is the compressor stator vane an-
gle, and

where A, B, C, and D are constant perturbation ma-
trices, numerically derived from the SOAPP, w; is the
state noise with covariance @, and w, is the measure-
ment noise with covariance R. The elements of R are
obtained from a priori flight data, while those of Q are
selected by trial and error.

The auxiliary set of unmeasured output variables
(flauz) listed in Table 1, is given by

gaux= H82+F6u+ yt

where
H=[H : H:]

and H; reflects the effect of estimated biases and its
clements are derived from the SVM, H; and F are
perturbation matrices derived from the SOAPP, and y;
is the vector of predicted trim values for the auxiliary
output variables, which is obtained from the SVM.



Table 2. Nonlinear engine variables.

Dnoz nozzle drag
d
Table 1. Linear auxiliary output variables, PSC Dpay  ram drag
algorithm requirements. Fe gross thrust
F; t Isive fi
Pry compressor inlet total pressure NP ne Zplroi:r:wc oarlcc
no t tot
PB bumer static pressure Pry ; Zstle 2 AO pressufe
Pr, afterbumer inlet total pressure SZF hénh margin " )
‘ t
Tr, compressor inlet total temperature SMyc  hig lcotx:foressor; margin
Ty bumner inlet total temperature Iy fozz ¢ Lhroal tota” temperature
Tr, bumer exit total temperature
Tr, s low turbine inlet total temperature Table 3. Measurement noise statistics.
Tr, afterburner inlet total temperature Parameter  Standard deviation
WCpan corrected fan air flow M 7 rpm
: N, 7 ipm
WCxpc corrected compressor air flow
Pr, 0.3 1b/in
Pr, 0.6 Ib/in
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900178

Fig. 1 The performance seeking control adaptive control system.
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Fig. 2 The F100 engine and sensor locations.
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Low turbine inlet
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Fig. 3 The F100 engine simulation based on the state variable model.
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Fig. 5 Modified estimation process using the proposed Kalman filter.
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Fig. 6 The F100 engine simulation state estimates for a nominal engine at Q =1 and Q = 101, PLA increased from
37° to 43° at 15 sec.
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Fig. 7 The F100 engine simulation parameters for a nominal engine, with PLA increased from 37° to 43° at 15 sec.
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(b) Bias estimates.

Fig. 7 Concluded.
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(a) Measured and estimated engine outputs.

Fig. 8 The F100 enginc simulation parameter estimates with biased measurements for a nominal engine, with
PLA increased from 37° to 43° at 15 sec.
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Fig. 9 The F100 engine simulation auxiliary output estimates for a nominal engine, with PLA increased from 37°
to 43° at 15 sec.
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Fig. 10 The F100 engine simulation parameter estimates for a deteriorated engine, with PLA increased from 37°
to 43° at 15 sec.
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(a) Measured output variables.

Fig. 11 The F-15 airplane measured engine parameters during compressor bleed variations at Mach 0.90, an
altitude of 30,000 ft, and PLA = 43°.
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Fig. 12 The F100 engine parameter estimates from the flight data in Fig. 11.
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Fig. 13 Proposed formulation estimated outputs from flight data compared with CDF formulation estimates from
flight data.
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Fig. 14 The proposed formulation and the CDF formulation engine parameter estimates from flight data compared
with measured engine parameters.
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